博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
线段树(基础)
阅读量:5148 次
发布时间:2019-06-13

本文共 3185 字,大约阅读时间需要 10 分钟。

有一个日志文件,存放当天用户ID和上线,下线的时间(时间为从0 点开始到当前的秒数),这个日志文件有10亿条记录。请你设计一个算法,根据这个日志文件绘制当天在线人数曲线图。

日志文件内容如下:
UID       上线时间       下线时间
112       200            5000               
342       1320          20080   
………………总共有10亿条
我的回答是,申请一个大数组,数组长度就是一天有多少秒,类似int a[24*60*60],初直为0,数组下标表示时间,内容表示当前同时在线人数
依次读取没条数据,将每条数据上/下线时间之间的所有数组都自加一
读取完所有数据并数组自加后,只要根据这个数组就可以很容易的绘制当天在线人数曲线了。
--------------
具体还是申请一个这么大的数组,不过不同点是:不是用下标代表秒数,而是将这个大数组当作一颗巨大的二叉树,a[i]的左孩子是a[2*i+1],右孩子 是a[2*i+2],然后每次累加都会是对数级别的(而不是线性的),总的复杂度从O(n^2)提高到了O(nlogn),不知道还有没有更好的……
-------------------------------------
还有一个好办法,可以把复杂度降低到O(n),先设置两个24*60*60的数组,对每条记录,进入在第一个数组+1,退出在第二个数组-1,然后对两个 数组执行累加(a[i] += a[i-1];这种),再然后把两个数组每一项加起来,就是要求的在线人数了~~

(一个数组也行)
动态规划思想:  a[i]时刻的人数 = a[i-1] + 时刻i增加的人数 - 时刻i走掉的人数
------------------------
http://hi.baidu.com/alpc62/blog/item/469edeca0043e382c8176875.html/cmtid/db18e201a61cfe0b1d9583c0

好久没写过算法了,添一个吧,写一个线段树的入门知识,比较大众化。

上次在湖大,其中的一道题数据很强,我试了好多种优化都TLE,相信只能用线段树才能过。回来之后暗暗又学了一次线段树,想想好像是第三次学了,像 网络流一样每学一次都有新的体会。

把问题简化一下:

在自然数,且所有的数不大于30000的范围内讨论一个问题:现在已知n条线段,把端点依次输入告诉你,然后有m个询问,每个询问输入一个点,要求 这个点在多少条线段上出现过;

最基本的解法当然就是读一个点,就把所有线段比一下,看看在不在线段中;

每次询问都要把n条线段查一次,那么m次询问,就要运算m*n次,复杂度就是O(m*n)

这道题m和n都是30000,那么计算量达到了10^9;而计算机1秒的计算量大约是10^8的数量级,所以这种方法无论怎么优化都是超时

-----

因为n条线段是固定的,所以某种程度上说每次都把n条线段查一遍有大量的重复和浪费;

线段树就是可以解决这类问题的数据结构

举例说明:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次

在[0,7]区间上建立一棵满二叉树:(为了和已知线段区别,用【】表示线段树中的线段)

                                               【0,7】

                               /                                            \
                     【0,3】                                           【4,7】
                  /               \                                    /                \
       【0,1】             【2,3】                 【4,5】               【6,7】
         /      \                 /      \                     /      \                   /      \
【0,0】 【1,1】【2,2】 【3,3】   【4,4】 【5,5】 【6,6】 【7,7】

每个节点用结构体:

struct line

{
      int left,right;//左端点、右端点
      int n;//记录这条线段出现了多少次,默认为0
}a[16];

和堆类似,满二叉树的性质决定a[i]的左儿子是a[2*i]、右儿子是a[2*i+1];(i从1开始)

然后对于已知的线段依次进行插入操作:

从树根开始调用递归函数insert

void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段

{
      if (s==a[step].left && t==a[step].right)
      {
            a[step].n++;//插入的线段匹配则此条线段的记录+1
            return;//插入结束返回
      }
      if (a[step].left==a[step].right)   return;//当前线段树的线段没有儿子,插入结束返回
      int mid=(a[step].left+a[step].right)/2;
      if (mid>=t)    insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
      else if (mid<s)    insert(s,t,step*2+1);//如果中点在s的左边,则应该插入到右儿子
      else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
      {
            insert(s,mid,step*2);
            insert(mid+1,t,step*2+1);
      }
}

三条已知线段插入过程:

[2,5]

--[2,5]与【0,7】比较,分成两部分:[2,3]插到左儿子【0,3】,[4,5]插到右儿子【4,7】

--[2,3]与【0,3】比较,插到右儿子【2,3】;[4,5]和【4,7】比较,插到左儿子【4,5】

--[2,3]与【2,3】匹配,【2,3】记录+1;[4,5]与【4,5】匹配,【4,5】记录+1

[4,6]

--[4,6]与【0,7】比较,插到右儿子【4,7】

--[4,6]与【4,7】比较,分成两部分,[4,5]插到左儿子【4,5】;[6,6]插到右儿子【6,7】

--[4,5]与【4,5】匹配,【4,5】记录+1;[6,6]与【6,7】比较,插到左儿子【6,6】

--[6,6]与【6,6】匹配,【6,6】记录+1

[0,7]

--[0,7]与【0,7】匹配,【0,7】记录+1

插入过程结束,线段树上的记录如下(红色数字为每条线段的记录n):

                                               【0,7】

                                                    1
                               /                                            \
                     【0,3】                                           【4,7】
                         0                                                     0
                 /                 \                                     /                 \
       【0,1】                 【2,3】                【4,5】                【6,7】
            0                           1                          2                         0
          /    \                      /      \                     /     \                    /      \
【0,0】 【1,1】 【2,2】 【3,3】 【4,4】 【5,5】 【6,6】 【7,7】
     0            0            0            0            0            0           1           0

询问操作和插入操作类似,也是递归过程,略

2——依次把【0,7】 【0,3】 【2,3】 【2,2】的记录n加起来,结果为2

4——依次把【0,7】 【4,7】 【4,5】 【4,4】的记录n加起来,结果为3

7——依次把【0,7】 【4,7】 【6,7】 【7,7】的记录n加起来,结果为1

不管是插入操作还是查询操作,每次操作的执行次数仅为树的深度——logN

建树有n次插入操作,n*logN,一次查询要logN,m次就是m*logN;总共复杂度O(n+m)*logN,这道题N不超过 30000,logN约等于14,所以计算量在10^5~10^6之间,比普通方法快了1000倍;

这道题是线段树最基本的操作,只用到了插入和查找;删除操作和插入类似,扩展功能的还有测度、连续段数等等,在N数据范围很大的时候,依然可以用离 散化的方法建树。

湖大的那道题目绕了个小弯子,alpc12有详细的题目和解题报告,有兴趣的话可以看看

线段树的经典题目就是poj1177的picturehttp://acm.pku.edu.cn/JudgeOnline /problem?id=1177

 
原文链接:

转载于:https://www.cnblogs.com/10jschen/archive/2012/09/01/2666337.html

你可能感兴趣的文章
Error:Execution failed for task ':app:transformClassesWithDexForRelease'
查看>>
Software AG成功整合Terracotta
查看>>
5 -- Hibernate的基本用法 --4 6 Hibernate事务属性
查看>>
CentOS7.2安装配置nginx+uwsgi+python+flask运行环境
查看>>
Spring对注解(Annotation)处理【转】
查看>>
深入理解reentrantlock
查看>>
双路快速排序
查看>>
关于bfs时间轴
查看>>
JS对象继承篇
查看>>
有关java的uri的一些理解
查看>>
正确使用Enum的FlagsAttribute
查看>>
Linux urandom&random
查看>>
wso2 使用配置
查看>>
关于微软必应词典客户端的案例分析
查看>>
【转载】GDI 映像方式 之 SetViewportExtEx 与 SetWindowExtEx 解析
查看>>
递增输出带表头结点的单链表元素
查看>>
读取文件的乱码问题
查看>>
windows 常用操作
查看>>
算法(第四版)C# 习题题解——1.4
查看>>
软件测试第一次作业
查看>>